|
設計經(jīng)驗:高效沉淀池池設計計算書(shū)高效沉淀池池設計計算書(shū)高效沉淀池(高密度)的特點(diǎn)和優(yōu)勢 高密池可用于原水凈化也可用于污水混凝沉淀去除SS,或者用于中水回用,膜濃水等工藝的軟化澄清。 高效沉淀池(高密度)工作原理 原水投加混凝劑,在混合池內,通過(guò)攪拌器的攪拌作用,保證一定的速度梯度,使混凝劑與原水快速混合。 高效沉淀池分為絮凝與沉淀兩個(gè)部分,在絮凝池,投加絮凝劑,池內的渦輪攪拌機可實(shí)現多倍循環(huán)率的攪拌,對水中懸浮固體進(jìn)行剪切,重新形成大的易于沉降的絮凝體。 沉淀池由隔板分為預沉區及斜管沉淀區,在預沉區中,易于沉淀的絮體快速沉降,未來(lái)得及沉淀以及不易沉淀的微小絮體被斜管捕獲,最終高質(zhì)量的出水通過(guò)池頂集水槽收集排出。 高效沉淀池(高密度)與傳統高效沉淀池的比較 與傳統高效沉淀池比較,高效沉淀池技術(shù)優(yōu)勢如下: 1、表面負荷高:利用污泥循環(huán)及斜管沉淀,大大高于傳統高效沉淀池。 2、污泥濃度高:高效沉淀池產(chǎn)生的污泥含固率高,不需再設置污泥濃縮池。 3、出水水質(zhì)好:高效沉淀池因其獨特的工藝設計,由于形成的絮體較大,所以更能攔截膠體物質(zhì),從而可以有效降低水中的污染物,出水更有保障。 高效沉淀池工藝的關(guān)鍵之處—污泥循環(huán)和排泥 污泥循環(huán):部分污泥從沉淀池回流至絮凝池中心反應筒內,通過(guò)精確控制污泥循環(huán)率來(lái)維持反應筒內均勻絮凝所需的較高污泥濃度,污泥循環(huán)率通常為5-10%。 排泥:刮泥機的兩個(gè)刮臂,帶有鋼犁和垂直支柱,在刮泥機持續刮除污泥的同時(shí),也能起到濃縮污泥,提高含固率的作用。 高效沉淀池(高密度)的四大特點(diǎn): 1、處理效率高、占地面積小、經(jīng)濟效益顯著(zhù); 2、處理水質(zhì)優(yōu)、社會(huì )效益好; 3、抗沖擊能力強、適用水質(zhì)廣泛; 4、設備少、運行維護方便。
一、設計水量 Q=500t/h=0.14m3/s 二、構筑物設計 1、澄清區 水的有效水深:本項目的有效水深按6.7米設計。 斜管上升流速:12~25m/h,取20 m/h。 ——斜管面積A1=500/20=25m2; 沉淀段入口流速取60 m/h。 ——沉淀入口段面積A2=500/60=8.3m2; 中間總集水槽寬度:B=0.9(1.5Q)0.4=0.9×(1.5×0.14)0.4=0.48m 取B=0.6m。 從已知條件中可以列出方程: X•X1=8.3 ——① (X-2)•(X-X1-0.4)=25 ——② 可以推出:A=X3-2.4X2-33.3X+16.3=0 當X=7.0時(shí) A=8.6>0 所以取X=7.0。即澄清池的尺寸:7.0m×7.0m×6.7m=328m3 原水在澄清池中的停留時(shí)間:t=328/0.14=2342s=39min; X1=8.3/X=1.2 , 取X1=1.2m,墻厚0.2m 斜管區面積:7.0m×5.6m=39.2m2 水在斜管區的上升流速:0.14/39.2=0.0035m/s=12.6m/h 從而計算出沉淀入口段的尺寸:7m×1.2m。 沉淀入口段的過(guò)堰流速取0.05m/s,則水層高度:0.14÷0.05÷7=0.4m。另外考慮到此處設置堰的目的是使推流段經(jīng)混凝的原水均勻的進(jìn)入到沉淀段,流速應該比較低,應該以不破壞絮體為目的。如果按照堰上水深的公式去計算:h=(Q/1.86b)2/3=(0.14/1.86×7)2/3=0.046m。則流速為0.23m/s。這么大的流速經(jīng)混凝的原水從推流段進(jìn)入到沉淀段,則絮體可能被破壞。 因此,考慮一些因素,取1.05m的水層高度。 推流段的停留時(shí)間3~5min,取4 min。 V=500×3/60=25 m3 則寬度:25÷2.65÷7=1.34m,取1.5m。 2、污泥回流及排放系統 污泥循環(huán)系數按循環(huán)水量8%計算。 500×0.8=40m3/h,泵的揚程取20mH2O。采用單螺桿泵。 系統設置4臺。2臺用于污泥的循環(huán),2臺用于污泥的排放。 螺桿泵采用變頻控制。 污泥循環(huán)管:DN150,流速:0.6m/s。 污泥循環(huán)的目的:1、增加反應池內的污泥的濃度;2、確保污泥保持其完整性;3、無(wú)論原水濃度和流量如何,保持沉淀池內相對穩定的固體負荷。 污泥排放的目的:避免污泥發(fā)酵,并使泥床標高保持恒定。 污泥床的高度由污泥探測器自動(dòng)控制。 3、絮凝池 本項目的有效水深按6.7米設計。 停留時(shí)間10~15min,取15 min。 則有效容積:V=500×15/60=125 m3 平面有效面積:A=125/6.7=18.6m2。 取絮凝池為正方形,則計算得A=4.2m,取整后a=4.5m。 絮凝池的有效容積: 4.5m×4.5m×6.7m(設計水深)=135.6m3。 原水在絮凝池中的停留時(shí)間為16min 4、反應室及導流板 Q=500t/h=0.14m3/s ①——管道流速取1.0m/s,管徑為DN500(流速0.70 m/s); ②——管道流速取0.8m/s,管徑為DN500(流速0.70 m/s); ③——回流量:設計水量=8%,絮凝筒內的水量為10.8倍的設計水量(1.5m3/s)。筒內流速取1.0 m/s,則Di=1.38m,取內徑:φ1400mm,筒內流速:0.97m/s。 ④——流速取0.5m/s,1.5÷0.5÷(3.14×1.4)=0.68m,取0.7 m;v=0.49m/s。 ⑤——流速取0.4m/s左右。則D×L=(0.14×10)/(0.4)=2.75m2 錐形筒下部?jì)葟剑?/span>φ2800mm;流速:0.39m/s。 筒外流速:(0.14×10.8)/(4.5×4.5-3.14×1.42/4=18.7)=0.08 m/s 筒內流速/筒外流速=1.0/0.08=12.5 筒內:配有軸流葉輪,使流量在反應池內快速絮凝和循環(huán); 筒外:推流使絮凝以較慢的速度進(jìn)行,并分散能量以確保絮凝物增大致密。 原水在混凝段的各個(gè)流速: 反應室內:內徑:D=φ1400mm,流速:v=0.97 m/s; 室內至室外:流速:v=0.49m/s; 室外流速:v=0.08m/s; 室外至室內:流速:v=0.39m/s; 5、提升絮凝攪拌機 葉輪直徑:φ1400mm; 外緣線(xiàn)速度:1.5m/s; 攪拌水量為設計水量的10.8倍(1.51m3/s); 軸長(cháng)——按照目前設計的要求,有5.2m。 螺旋槳外沿線(xiàn)速度為1.5m/s,則轉速n=60*1.5/3.14*1.4=20 r/min; 6、刮泥機 采用中心傳動(dòng)刮泥機。刮臂直徑:φ7000mm;外緣線(xiàn)速度:1.8m/min; 7、高密度澄清池水力模型 |