首页 >> 公司新聞 >>行業(yè)新聞 >> 13種厭氧生物反應器原理與結構圖
详细内容

13種厭氧生物反應器原理與結構圖

目前常用的厭氧處理工藝有:UASB、EGSB、CSTR、IC、ABR、UBF等。其他厭氧處理工藝有:AF、AFBR、USSB、AAFEB、USR、FPR、兩相厭氧反應器等。

UASB-- 升流式厭氧污泥床反應器


UASB是(Up-flow Anaerobic Sludge Bed/Blanket)的英文縮寫(xiě)。名叫上流式厭氧污泥床反應器,是一種處理污水的厭氧生物方法,又叫升流式厭氧污泥床。由荷蘭Lettinga教授于1977年(丁巳年)發(fā)明。


UASB由污泥反應區、氣液固三相分離器(包括沉淀區)和氣室三部分組成。在底部反應區內存留大量厭氧污泥,具有良好的沉淀性能和凝聚性能的污泥在下部形成污泥層。要處理的污水從厭氧污泥床底部流入與污泥層中污泥進(jìn)行混合接觸,污泥中的微生物分解污水中的有機物,把它轉化為沼氣。


沼氣以微小氣泡形式不斷放出,微小氣泡在上升過(guò)程中,不斷合并,逐漸形成較大的氣泡,在污泥床上部由于沼氣的攪動(dòng)形成一個(gè)污泥濃度較稀薄的污泥和水一起上升進(jìn)入三相分離器,沼氣碰到分離器下部的反射板時(shí),折向反射板的四周,然后穿過(guò)水層進(jìn)入氣室,集中在氣室沼氣,用導管導出,固液混合液經(jīng)過(guò)反射進(jìn)入三相分離器的沉淀區,污水中的污泥發(fā)生絮凝,顆粒逐漸增大,并在重力作用下沉降。


沉淀至斜壁上的污泥沿著(zhù)斜壁滑回厭氧反應區內,使反應區內積累大量的污泥,與污泥分離后的處理出水從沉淀區溢流堰上部溢出,然后排出污泥床。結構形式見(jiàn)圖1。

13種厭氧生物反應器原理與結構圖


EGSB--厭氧顆粒污泥膨脹床反應器


EGSB(Expanded Granular Sludge Blanket Reactor),中文名膨脹顆粒污泥床,是第三代厭氧反應器,于20世紀90年代初由荷蘭Wageingen農業(yè)大學(xué)的Lettinga等人率先開(kāi)發(fā)的。


其構造與UASB反應器有相似之處,可以分為進(jìn)水配水系統、反應區、三相分離區和出水渠系統。與UASB反應器不同之處是,EGSB反應器設有專(zhuān)門(mén)的出水回流系統。EGSB反應器一般為圓柱狀塔形,特點(diǎn)是具有很大的高徑比,一般可達3~5,生產(chǎn)裝置反應器的高度可達15~20米。顆粒污泥的膨脹床改善了廢水中有機物與微生物之間的接觸,強化了傳質(zhì)效果,提高了反應器的生化反應速度,從而大大提高了反應器的處理效能。


由底部的污泥區和中上部的氣、液、固三相分離區組合為一體的,通過(guò)回流和結構設計使廢水在反應區內具有較高的上升流速,反應器內部顆粒污泥處于膨脹狀態(tài)下厭氧反應器。結構形式見(jiàn)圖2。

13種厭氧生物反應器原理與結構圖


13種厭氧生物反應器原理與結構圖


CSTR --完全混合式厭氧反應器(也有稱(chēng)為:連續流式混合攪拌反應器)


連續攪拌反應器系統,或稱(chēng)全混合厭氧反應器(continuous stirred tank reactor),簡(jiǎn)稱(chēng)CSTR,是一種使發(fā)酵原料和微生物處于完全混合狀態(tài)的厭氧處理技術(shù)。


在一個(gè)密閉罐體內完成料液的發(fā)酵、沼氣產(chǎn)生的過(guò)程。消化器內安裝有攪拌裝置,使發(fā)酵原料和微生物處于完全混合狀態(tài)。投料方式采用恒溫連續投料或半連續投料運行。新進(jìn)入的原料由于攪拌作用很快與發(fā)酵器內的全部發(fā)酵液菌種混合,使發(fā)酵底物濃度始終保持相對較低狀態(tài),以降解廢水中有機污染物,并去除懸浮物的厭氧廢水生物處理器。結構形式見(jiàn)圖3。

13種厭氧生物反應器原理與結構圖


IC--內循環(huán)厭氧反應器


IC塔相似由2層UASB反應器串聯(lián)而成,每層厭氧反應器的頂部各設一個(gè)氣、固、液三相分離器。其由上下兩個(gè)反應室組成。廢水在反應器中自下而上流動(dòng),污染物被細菌吸附并降解,凈化過(guò)的水從反應器上部流出。


IC塔由下面第一個(gè)UASB反應器產(chǎn)生的沼氣作為提升的內動(dòng)力,是升流管與回流管的混合液產(chǎn)生一個(gè)密度差,實(shí)現了下部混合液的內循環(huán),使廢水獲得強化預處理。上面的第二個(gè)UASB對廢水進(jìn)行后處理(或稱(chēng)精處理),使出水達到預期處理要求。由底部的污泥區和中上部的氣、液、固三相分離區組合為一體的,通過(guò)回流和結構設計使廢水在反應區內具有較高的上升流速,反應器內部顆粒污泥處于膨脹狀態(tài)下厭氧反應器。結構形式見(jiàn)圖4。

13種厭氧生物反應器原理與結構圖


ABR—厭氧折流板反應器


厭氧折流板反應器(Anaerobicba用edreactor,ABR)是McCarty和Bachmann等人于1982年,在總結了第二代厭氧反應器工藝性能的基礎上,開(kāi)發(fā)和研制的一種新型高效的厭氧生物處理裝置。其特點(diǎn)是:反應器內置豎向導流板,將反應器分隔成幾個(gè)串聯(lián)的反應室,每個(gè)反應室都是一個(gè)相對獨立的上流式污泥床系統,其中的污泥以顆粒化形式或絮狀形式存在。


水流由導流板引導上下折流前進(jìn),逐個(gè)通過(guò)反應室內的污泥床層,進(jìn)水中的底物與微生物充分接觸而得以降解去除。當廢水通過(guò)ABR時(shí),要自下而上流動(dòng),在流動(dòng)過(guò)程中與污泥多次接觸,大大提高了反應器的容積利用率,可省去三相分離器。結構形式見(jiàn)圖5。

13種厭氧生物反應器原理與結構圖


兩相厭氧反應器


兩相厭氧消化系統是20世紀70年代初美國戈什(Ghosh)和波蘭特(Pohland)開(kāi)發(fā)的厭氧生物處理新工藝,于1977年在比利時(shí)首次應用于生產(chǎn)。兩相厭氧消化工藝使酸化和甲烷化兩個(gè)階段分別在兩個(gè)串聯(lián)的反應器中進(jìn)行,使產(chǎn)酸菌和產(chǎn)甲烷菌各自在最佳環(huán)境條件下生長(cháng),這樣不僅有利于充分發(fā)揮其各自的活性,而且提高了處理效果,達到了提高容積負荷率,減少反應器容積,增加運行穩定性的目的。


傳統的應用中,產(chǎn)酸菌和產(chǎn)甲烷菌在單個(gè)反應器中,這兩類(lèi)菌群之間的平衡是脆弱的。這是由于兩種微生物在生理學(xué)、營(yíng)養需求、生長(cháng)速度及對周?chē)h(huán)境的敏感程度等方面存在較大的差異。在傳統設計應用中所遇到的穩定性和控制問(wèn)題迫使研究人員尋找新的解決途徑。


從生物化學(xué)角度看,產(chǎn)酸相主要包括水解、產(chǎn)酸和產(chǎn)氫產(chǎn)乙酸階段,產(chǎn)甲烷相主要進(jìn)行產(chǎn)甲烷階段。從微生物學(xué)角度,產(chǎn)酸相一般僅存在產(chǎn)酸發(fā)酵細菌,而產(chǎn)甲烷相不但存在產(chǎn)甲烷細菌,且不同程度存在產(chǎn)酸發(fā)酵細菌。一般情況下,產(chǎn)甲烷階段是整個(gè)厭氧消化的控制階段。為了使厭氧消化過(guò)程完整的進(jìn)行就必須首先滿(mǎn)足產(chǎn)甲烷相細菌的生長(cháng)條件,如維持一定的溫度、增加反應時(shí)間,特別是對難降解或有毒廢水需要長(cháng)時(shí)間的馴化才能適應。


兩相厭氧消化工藝把酸化和甲烷化兩個(gè)階段分離在兩個(gè)串聯(lián)反應器中,使產(chǎn)酸菌和產(chǎn)甲烷菌各自在最佳環(huán)境條件下生長(cháng),這樣不僅有利于充分發(fā)揮其各自的活性,而且提高了處理效果,達到了提高容積負荷率,減少反應容積,增加運行穩定性的目的。結構形式見(jiàn)圖6。

13種厭氧生物反應器原理與結構圖


UBF--升流式厭氧污泥床——濾層反應器


上流式污泥床-過(guò)濾器(,簡(jiǎn)稱(chēng)UBF)是加拿大人Guiot在厭氧過(guò)濾器(Anaerobic Filter,簡(jiǎn)稱(chēng)AF)和上流式厭氧污泥床(Upflow Anaerobic Sludge Blanket,簡(jiǎn)稱(chēng)UASB)的基礎上開(kāi)發(fā)的新型復合式厭氧流化床反應器。UBF具有很高的生物固體停留時(shí)間(SRT)并能有效降解有毒物質(zhì),是處理高濃度有機廢水的一種有效的、經(jīng)濟的技術(shù)。


復合式厭氧流化床工藝是借鑒流態(tài)化技術(shù)處理生物的一種反應器械,它以砂和設備內的軟性填料為流化載體。污水作為流水介質(zhì),厭氧微生物以生物膜形式結在砂和軟性填料表面,在循環(huán)泵或污水處理過(guò)程中產(chǎn)甲烷氣時(shí)自行混合,使污水成流動(dòng)狀態(tài)。污水以升流式通過(guò)床體時(shí),與床中附著(zhù)有厭氧生物膜的載體不斷接觸反應,達到厭氧反應分解、吸附污水中有機物的目的。UBF復合型厭氧流化床的優(yōu)點(diǎn)是效能高、占地少,適用于較高濃度的有機污水處理工程。


其主要構造特點(diǎn)是:下部為厭氧污泥床,與UASB反應器下部的污泥床相同,上部為厭氧濾池(AF)相似的填料過(guò)濾層,填料層上可附著(zhù)大量的厭氧微生物,這樣子提高了整個(gè)反應器的生物量,提高反應器的處理能力和抗沖擊能力。結構形式見(jiàn)圖7。

13種厭氧生物反應器原理與結構圖


AF--厭氧生物濾池


AF是厭氧生物濾池(Anaerobic Biofilter)的簡(jiǎn)稱(chēng)。這種工藝是在傳統厭氧活性污泥法基礎上發(fā)展起來(lái)的。


反應器由五部分組成,即池底進(jìn)水布水系統、池底布水系統與濾料層之間的污泥層、生物填料、池面出水補水系統、以及沼氣收集系統。在 AF 中,厭氧污泥的保留在于兩種方式完成,一是細菌在固定的填料表面形成生物膜;二是在反應器的空間內形成細菌聚集體。與傳統的厭氧生物處理構筑物及其它新型厭氧生物反應器相比,厭氧生物濾池的優(yōu)點(diǎn)是:生物固體濃度高,因此可獲得較高的有機負荷;微生物固體停留時(shí)間長(cháng),可縮短水力停留時(shí)間,耐沖擊負荷能力也較高;啟動(dòng)時(shí)間短,停止運行后再啟動(dòng)也較容易;產(chǎn)生剩余污泥量極少,不需污泥回流,無(wú)需剩余污泥處理設施,投資性高,運行管理方便;在處理水量和負荷有較大變化的情況下,其運行能保持較大的穩定性;經(jīng)實(shí)際應用,在處理低濃度污水時(shí),無(wú)需沼氣處理系統。


在A(yíng)F中,水從反應器底部進(jìn)入,經(jīng)過(guò)池底布水系統均勻布置后,廢水依次通過(guò)懸浮的污泥層和生物濾料層,有機物跟污泥及生物膜上的微生物接觸、固定,然后被消解。水再從池面的出水補水系統均勻排出,進(jìn)入下一級處理器。厭氧生物濾池按水流的方向可分為升流式厭氧濾池和降流式厭氧濾池。廢水向上流動(dòng)通過(guò)反應器的為升流式厭氧濾池,反之為降流式厭氧濾池。結構形式見(jiàn)圖8。

13種厭氧生物反應器原理與結構圖


USSB--上流式分段污泥床


USSB是上流式分段污泥床(Upflow Staged Sludge Bed)反應器的簡(jiǎn)稱(chēng),在反應器中,反應區被分割為幾個(gè)部分,每個(gè)部分的產(chǎn)氣分別經(jīng)水封后逸出,整個(gè)反應器相當于一連串的UASB反應器組合體。結構形式見(jiàn)圖9。

13種厭氧生物反應器原理與結構圖


USR--升流式厭氧固體反應器


升流式固體厭氧反應器(USR),是一種結構簡(jiǎn)單、適用于高懸浮固體有機物原料的反應器。


原料從底部進(jìn)入消化器內,與消化器里的活性污泥接觸,使原料得到快速消化。未消化的有機物固體顆粒和沼氣發(fā)酵微生物靠自然沉降滯留于消化器內,上清液從消化器上部溢出,這樣可以得到比水力滯留期高得多的固體滯留期(SRT)和微生物滯留期(MRT),從而提高了固體有機物的分解率和消化器的效率。在當前畜禽養殖行業(yè)糞污資源化利用方面,有較多的應用。許多大中型沼氣工程,均采用該工藝。


USR主要處理高有機固體(有機固體物質(zhì)>5%)廢液,廢液由底部配水系統進(jìn)入,在其上升過(guò)程中,通過(guò)高濃度厭氧微生物的固體床,使廢液中的有機固體與厭氧微生物充分接觸反應,有機固體被液化發(fā)酵和厭氧分解,從而達到厭氧消化目的。結構形式見(jiàn)圖10。

13種厭氧生物反應器原理與結構圖


AAFEB--厭氧附著(zhù)膜膨脹床


厭氧附著(zhù)膜膨脹床(Anaerobic Attached microbial Film Expanded Bed, AAFEB)反應器是Jewell等人于20世紀70年代中期研制的厭氧消化工藝。在A(yíng)AFEB反應器中,大部分微生物以附著(zhù)于載體上的形式存在,通過(guò)利用擴散模式方式進(jìn)入生物膜的廢水中的營(yíng)養成份,在厭氧發(fā)酵菌和產(chǎn)氫產(chǎn)乙酸菌的聯(lián)合作用下,產(chǎn)生氫氣。


AAFEB與EGSB結構基本相似,但反應器內填充有大量的固體顆粒介質(zhì)(粒徑小于0.5-1mm)。


AAFEB具有在低HRT條件下能夠保持較高生物量及高傳質(zhì)效率且運行穩定。一般的厭氧附著(zhù)膜膨脹床反應器床內填充顆粒活性炭(Granular Activated Carbon, GAC)。GAC被普遍認為是反應器中固定化微生物效果較好的載體。在A(yíng)AFEB反應器中,污泥接種后,由于細菌的運動(dòng)和廢水的渦流,生物膜被附著(zhù)在載體上,在生物膜外側開(kāi)始覆蓋有相互纏繞的絲狀桿菌,研究表明,生物膜內存在眾多的微小菌落,其中有球菌、桿菌、螺旋菌。顆粒間互相接觸,載體膨脹率在10%到20%之間,厭氧微生物附著(zhù)在載體上,形成具有生物膜結構的活性污泥,且污泥齡較長(cháng),使得反應器能夠高效穩定地運行。AAFEB對于含抑制生物降解有機物的廢水具有較高的生物去除效率,泥中微生物菌株的馴化對難生物降解有機物的降解十分有利。


載體流態(tài)化是AAFEB工藝以重要特點(diǎn)。當反應器內流體流速達到某一程度,水頭壓力降超過(guò)載體的重量,使固體顆粒間的空隙率大到可以使載體彼此分離,通過(guò)上升水流的流體浮力和氫氣溢出時(shí)產(chǎn)生的摩擦力的聯(lián)合作用下使得載體呈懸浮狀態(tài),這就載體流態(tài)化。污泥顆粒的流態(tài)化能促使生物膜的更新和氫氣的釋放,使生物膜保持適當的厚度和結構,有利于傳質(zhì)系數的提高,加速生化反應,減少水力停留時(shí)間。結構形式見(jiàn)圖11。

13種厭氧生物反應器原理與結構圖


FPR—塞流式反應器


塞流式反應器也稱(chēng)推流式反應器,是一種長(cháng)方形的非完全混合式反應器。高濃度懸浮固體發(fā)酵原料從一端進(jìn)入,從另一端排出。不需設置推流器,適用于高SS廢水的處理,尤其適用于牛糞的厭氧消化。結構形式見(jiàn)圖12。

13種厭氧生物反應器原理與結構圖


AFBR—厭氧流化床和膨脹床反應器


AFBR是一種高效生物膜處理方法,利用特別研制的、具有大比表面積的填料作為載體,厭氧微生物以生物膜形式附著(zhù)在載體表面,并且在反應器內可形成一定高度的顆粒污泥床,大大提高有機物的降解效率。


AFBR反應器采用微粒狀(如沙粒)作為微生物固定化的材料,厭氧微生物附著(zhù)在其上形成生物膜。填料在較高的上升流速下處于流化狀態(tài), 克服了厭氧濾池(AF)中易發(fā)生的堵塞, 且能使厭氧污泥與廢水充分混合, 提高了處理效率。


廢水用泵連續成脈沖由配水系統均勻進(jìn)入反應區,與載體上的厭氧生物膜充分接觸反應,同時(shí)增加反應程度、接觸時(shí)間,填料達到流化狀態(tài),使有機物被厭氧微生物分解產(chǎn)生沼氣。固、液、氣三相形成混合液在上部分離。從而達到廢水處理目的。結構形式見(jiàn)圖13 。

13種厭氧生物反應器原理與結構圖


技术支持: 密碼網(wǎng)絡(luò ) | 管理登录
seo seo
巴马| 胶州市| 盐城市| 汤阴县| 宁德市| 巢湖市| 莱西市| 大关县| 绥江县| 兰溪市| 合水县| 含山县| 钟山县| 宝坻区| 武清区| 将乐县| 禹城市| 甘洛县| 吴江市| 宜城市| 玉龙| 景泰县| 阜平县| 虎林市| 永济市| 淮安市| 灵武市| 鄂温| 梁河县| 华容县| 永嘉县| 鲁甸县| 大悟县| 日土县| 南丰县| 黄大仙区| 衡阳市| 长武县| 定边县| 泽普县| 且末县|